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Abstract

We identify four dimensions of monetary policy in the euro area using narrative restric-

tions applied to high-frequency data. By leveraging well-known historical episodes—such

as Mario Draghi’s ”whatever it takes” speech—we can separately identify conventional

policy, forward guidance, quantitative easing, and asymmetric country risk premia

shocks using a single narrative restriction per shock. After controlling for predictability

in high-frequency asset movements and state-dependent variance in a Bayesian factor

model, we find limited evidence for the importance of information shocks. We then use

our shock measures to estimate the aggregate effects of monetary policy instruments.

We implement a Bayesian VAR with distributed lags and stochastic volatility that al-

lows for overidentifying restrictions on the impulse responses. We find that tightening

along any monetary policy dimension causes declines in activity and inflation, though

magnitudes vary considerably. Forward guidance has marginal effects on economic

variables, while asset purchases induce larger impacts, but both remain less potent

than conventional policy.
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1 Introduction

Following the Great Recession, central banks across advanced economies experimented with

new unconventional monetary policy instruments to stimulate economic activity and achieve

their inflation targets at the zero lower bound. Given the recency of these policies, there

remains limited direct empirical evidence on the impact these measures have had on economic

aggregates.

In this paper, we identify four dimensions of monetary policy using narrative restrictions

and high-frequency data (Kuttner, 2001; Gürkaynak et al., 2005) for the euro area. We use

the identified shocks to estimate the aggregate dynamic causal effects of different monetary

policy instruments. We find that contractionary shocks along any dimension induce persis-

tent declines in economic activity and inflation, though conventional policy generates the

largest responses.

Identification relies on well-known historical episodes during which one can mostly at-

tribute asset price movements to a specific monetary policy instrument. For instance, during

the January 22, 2015, Governing Council (GC) meeting, the European Central Bank (ECB)

surprised markets by announcing a larger-than-expected asset purchase program, and long-

dated yields fell sharply. We identify similar episodes for conventional monetary policy,

forward guidance, quantitative easing, and asymmetric country risk premia. A single narra-

tive sign restriction per shock is sufficient to tightly identify each shock separately.

We establish that for the euro area information shocks (Nakamura and Steinsson, 2018;

Jarociński and Karadi, 2020) play a negligible role in the high-frequency movements of

assets around policy events. After controlling for predictability in high-frequency movements

(Bauer and Swanson , 2023), four types of monetary policy shocks, and state-dependent

variance in both policy shocks and idiosyncratic errors, we find there is very little residual

variation left for information shocks to be meaningful. We show that, unlike the other

monetary policy shocks we identify, the information shocks are noisy, do not display heavy-

tails nor time-varying volatility, and are very difficult to tie to the historical record.

At the aggregate level, we propose to estimate the effects of monetary policy using a

Bayesian VAR model with distributed lags (VAR-DL) for the policy shocks. This specifi-
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cation carries several advantages. First, distributed lag models are equivalent to local pro-

jections in terms of bias (Baek and Lee, 2022; Montiel Olea et al., 2025). Second, VAR-DL

models are straightforward to estimate in a Bayesian setting1, which allows one to place overi-

dentifying zero, sign, and magnitude restrictions on the impulse-responses. Third, Bayesian

methods allow us to sample the monetary policy shocks from their high-frequency posterior

at each MCMC iteration, thus naturally propagating estimation uncertainty from the high-

frequency factor model to the aggregate impulse response estimates. Finally, we propose

priors on the distributed lag coefficients which allow one to effectively trade off bias for vari-

ance by either penalizing the differences in adjacent impulse-response estimates or shrinking

the entire impulse-response toward a low-order polynomial.

Our estimates indicate that forward guidance has small effects on economic activity, while

the effects of quantitative easing are slightly smaller than those of conventional monetary

policy. We find that a tightening along any of the monetary dimensions we consider causes

declines in economic activity, prices, and in money supply. Importantly, the responses to

forward guidance shocks exhibit puzzling behaviors when relying solely on high-frequency

identification, with industrial production rising following a contractionary shock, thus contra-

dicting standard theory. Imposing overidentifying dynamic sign restrictions eliminates these

puzzles and produces theoretically consistent responses, suggesting that high-frequency in-

struments alone may be insufficient to cleanly identify the effects of forward guidance shocks.

For asymmetric country risk premia shocks, we find evidence of stagflationary dynamics, with

peripheral yields increasing very persistently over the entire forecast horizon, measures of

economic activity weakening, and prices rising. The inflationary pressures stem from cur-

rency depreciation driven by heightened fragmentation risks.

Related Literature. This paper contributes to three main strands of the monetary

policy literature: the high-frequency identification of monetary policy shocks, narrative iden-

tification approaches, and the estimation of the macroeconomic effects of monetary policy.

A large literature dating back to Kuttner (2001) and Gürkaynak et al. (2005) uses high-

frequency asset price movements around policy announcements to identify monetary policy

1On the other hand, local projections do not induce a proper likelihood and require Bayesian quasi-
likelihood techniques, see Ferreira et al. (2025).
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shocks. This approach exploits the idea that asset price changes in narrow windows around

central bank communications primarily reflect news about monetary policy rather than other

sources of macroeconomic fluctuations. Swanson (2021) extends earlier studies by identifying

forward guidance and large-scale asset purchases shocks using exclusion restrictions that

specify which assets can respond to each shock. Altavilla et al. (2019) employ similar methods

for the euro area, but identify instead two dimensions of forward guidance. Like this paper,

Ricco et al. (2025) also consider unconventional policy instruments, asymmetric country risk

premia, and information shocks in the euro area, but rely instead on exclusion restrictions

as in Altavilla et al. (2019) and Swanson (2021).

Another strand of the literature identifies monetary policy shocks using narrative evi-

dence from policy documents and historical records. Romer and Romer (1989) and Romer

and Romer (2004) pioneered this approach by reading FOMC minutes to identify episodes

during which the Federal Reserve exogenously tightened policy. Cloyne and Hürtgen (2016)

apply similar methods to the United Kingdom. Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

formalize the use of narrative restrictions in structural vector autoregression models with

sign restrictions imposed on historical decompositions. Badinger and Schiman (2023) rely

on that approach to identify the effects of conventional monetary policy shocks in the euro

area.

We contribute to these two strands of the literature by combining both high-frequency

data with narrative restrictions to identify multiple dimensions of monetary policy. We

employ a Bayesian factor model with regime-switching volatility in the structural shocks

and idiosyncratic errors, capturing the characteristic pattern whereby extended periods of

tranquility are punctuated by episodes of heightened policy activity. We show that a single

narrative restriction per shock is sufficient to recover that shock without having to resort to

exclusion restrictions, and that our shocks align closely with the historical record.

More recently, several studies have documented that monetary policy announcements

convey information about the central bank’s assessment of the economic outlook, prompting

financial market responses beyond those attributable to policy changes alone (Campbell et

al., 2012; Nakamura and Steinsson, 2018). Using sign restrictions to separately identify con-

ventional policy and information shocks, Jarociński and Karadi (2020) show that information
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shocks associated with a rise in yields lead to increases in economic activity and prices. Us-

ing high-frequency data for the euro area, Andrade and Ferroni (2021) identify conventional

monetary policy, Delphic (news) forward guidance, and Odyssean (policy) forward guidance

shocks, and they obtain impulse responses similar to those reported by Jarociński and Karadi

(2020).

The view that monetary policy announcements induce large reappraisals of the economic

outlook by market participants has recently been challenged by Bauer and Swanson (2023).

The authors show that high-frequency asset movements around central bank announcements

are predictable, that surveyed professional forecasters do not revise their economic projec-

tions in a way that is consistent with the existence of information shocks, and that the

forecasts made by the Federal Reserve are not more accurate than those of private sector

counterparts. They suggest instead that market participants underestimate the extent to

which central banks respond to recent economic and financial developments, a channel they

call ”response to news”. Both Cieslak (2018) and Schmeling et al. (2022) provide supporting

empirical evidence that shows markets fail to anticipate the scale of central banks’ responses

to large and infrequent shocks. Additionally, Miranda-Agrippino and Ricco (2021) docu-

ment that controlling for predictability in high-frequency asset movements helps to reduce

the puzzles encountered when using such instruments in monthly vector autoregressions,

findings confirmed by both Swanson (2024) and Ricco et al. (2025).

We contribute to this debate in several ways. First, we develop a high-frequency Bayesian

factor model which directly accounts for predictability in high-frequency asset price move-

ments and models time-varying volatility in the monetary policy shocks and the idiosyncratic

residuals. We find that neither the narrative nor the statistical evidence supports the ex-

istence of meaningful information effects. For the former, we fail to map the identified

information shocks to policy events that conveyed material reassessments of the economic

outlook by the ECB. For the latter, we show that information shocks do not display the

heavy tails nor the time-varying heteroskedasticity characteristic of the other policy shocks

we identify. At the same time, we find that both a composite index of systemic stress (Hóllo

et al., 2012) and an indicator of monetary policy uncertainty2 (Bauer et al., 2021) are sig-

2We thank colleagues at the ECB for sharing this series for the euro area with us.
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nificant predictors of high-frequency movements in yields with maturities of two years and

greater.

Several papers have employed high-frequency monetary policy shocks to study the ag-

gregate dynamic causal effects of monetary policy. Both Gertler and Karadi (2015) and

Caldara and Herbst (2019) document the effects of conventional monetary policy shocks us-

ing high-frequency surprises as external instruments in a proxy-SVAR (Mertens and Ravn,

2013; Stock and Watson, 2012). Swanson (2024) uses high-frequency surprises to estimate

the effects of conventional policy, forward guidance, and large-scale asset purchases on US

economic outcomes, and finds that conventional policy has the largest effects, while Ricco et

al. (2025) perform a similar exercise for the euro area.

We contribute to this literature in several ways. On the methodological side, we pro-

pose a Bayesian VAR with distributed lags (VAR-DL) that allows for overidentifying zero,

sign, and magnitude restrictions on the impulse-responses. Distributed lag models deliver

asymptotically unbiased impulse-responses up to the horizon of the distributed lag (Baek

and Lee, 2022; Montiel Olea et al., 2025). The Bayesian framework allows us to naturally

propagate the uncertainty from the high-frequency shock identification stage to the macroe-

conomic analysis, whereas most of the prior literature treats the proxies as data. We develop

flexible priors that penalize differences in adjacent impulse-response coefficients to impose

smoothness, thereby substantially reducing the jaggedness characteristic of distributed lag

and local projections impulse-response estimators while introducing minimal bias.

On the substantive side, we show that conventional policy remains the most effective

instrument to achieve the ECB’s inflation mandate. We document that forward guidance

shocks exhibit puzzling macroeconomic responses when relying on high-frequency identi-

fication only, consistent with findings by Miranda-Agrippino and Ricco (2023), Swanson

(2024), and Ricco et al. (2025). Imposing theory-consistent and overidentifying dynamic

sign restrictions resolves these puzzles. Finally, we show that adverse asymmetric country

risk premia shocks generate stagflationary dynamics that contrast with the disinflationary

effects generated by other policy instruments.

The rest of the paper is organized as follows. Section 2 describes the high-frequency

Bayesian factor model and the identification strategy. Section 3 presents the identified
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high-frequency monetary policy shocks and discusses the role played by information effects.

Section 4 presents the Bayesian VAR-DL framework and estimates of the macroeconomic

effects of different monetary policy instruments. Finally, section 5 concludes and discusses

implications for monetary policy design in the euro area.

2 High-Frequency Identification

In this section, we describe the Bayesian factor model we use to identify high-frequency

monetary policy surprises. We discuss the econometric implementation of our identification

strategy and the identifying assumptions we rely upon.

2.1 Data and High-Frequency Model

The high-frequency analysis leverages the euro area Communication Event-Study Database

(EA-CED) collected by Istrefi et al. (2024). The dataset covers the period 1999-2024 and

includes high-frequency movements for overnight interest swaps (OIS), sovereign yields, ex-

change rates, stock price indices, and inflation-linked swaps (ILS) over 300 scheduled GC

meetings and 4,400 intermeeting communication events. The latter include speeches and

interviews given by the ECB president, members of the Executive Board of the ECB, and

the governors of the national central banks of France, Germany, Italy, and Spain.

To ensure the intermeeting events only capture information about the path of euro area

monetary policy, we apply the following filters. First, we retain only those events which

generated abnormal returns, as estimated by Istrefi et al. (2024), in at least three of the

assets we consider in the high-frequency model. Second, we discard observations that do

not fall during market hours or occur less than one hour after an FOMC policy decision

or a macroeconomic data release surprise3. Third, we discard events prior to 2001 to avoid

measurement error from the illiquid and underdeveloped OIS market that characterized the

early years of the monetary union. The final sample includes 550 events.

The high-frequency model we consider is a Bayesian factor model with regime-dependent

3See Istrefi et al. (2024) for details on the news releases they control for
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variances:

yt = Λϵt +Bxt + vt (1)

ϵt ∼ N (0,Σϵ
sϵ), vt ∼ N (0,Σv

sv), sϵ, sv ∈ {low, high} (2)

where yt is a N × 1 vector of high-frequency movements in asset prices, Λ is a N ×K

matrix of factor loadings, ϵt is aK×1 vector of monetary policy shocks, B is a N×M matrix

of coefficients, xt is a M × 1 vector of financial and economic control variables, and vt is a

N × 1 vector of idiosyncratic residuals. Both the structural shocks ϵt and the idiosyncratic

components vt feature regime-switching volatility. This allows us to control for time-varying

heteroskedasticity and the empirical regularity that asset price volatility is higher during

scheduled GC meetings than intermeeting events.

The model includes 15 variables: OIS yields (1-month, 3-month, 6-month, 1-year, 2-year,

3-year, 5-year, 7-year, and 10-year), Italian sovereign yields (2-year, 5-year, and 10-year),

the EURO STOXX 50 stock price index, the Euro/Dollar exchange rate, and the 1-year ILS.

The model also controls for predictability in the high-frequency movements of assets

(Bauer and Swanson , 2023) by allowing for a vector of exogenous controls xt. Specifically,

we include the lagged 3-month changes for the following eight variables: the Composite

Indicator of Systemic Stress (Hóllo et al., 2012), the monetary policy uncertainty indicator

for the euro area (Bauer et al., 2021), the EURO STOXX 50 stock index, Brent crude, the

yield curve slope (measured as the difference between the 10-year and 3-month OIS yields),

the Germany-Italy 10-year sovereign spread, core HICP inflation, and unemployment.

2.2 Determining the Number of Factors

To determine the dimensionK of the structural shocks ϵt, and therefore the number of mone-

tary policy instruments, we apply Bayesian LASSO shrinkage with factor-specific hierarchical

priors on the factor loadings:

Λij|λj ∼ Laplace(0, 1/λj), λj ∼ Gamma(aλ, bλ) (3)

The Bayesian LASSO prior induces adaptive L1 regularization on the factor loadings
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through its hierarchical structure. Each loading Λij receives a Laplace prior centered at

zero. The Laplace distribution is sharply peaked at zero, and allows for non-zero values only

if supported by the data. Factors with weak explanatory power are assigned large λj penalty

parameters, thereby inducing aggressive shrinkage of the corresponding column of loadings

Λ·,j toward zero. The intensity of the shrinkage applied is governed by the hyperparameters

(aλ, bλ). During the factor selection phase, we point-identify a rotation of the factors ϵt by

imposing block-lower triangularity on Λ with positive diagonal elements (Lopes and West,

2004), and we allow for up to nine factors.

Figure 1 displays the posterior medians of the absolute factor loadings |Λij|. We set

aλ = bλ = 0.25 for moderate shrinkage4. The heatmap reveals four factors with large

loadings. The first one primarily affects short-term rates, the second and third load mostly

on the middle- and long-end of the yield curve, and the fourth on sovereign yields and stock

prices. A fifth factor loads more weakly on longer-dated risk-free and sovereign yields. Based

on this evidence, we set K = 5.

Figure 1: Heatmap for Posterior Medians of Factor Loadings

Note: The heatmap displays the absolute value of posterior median factor loadings |Λij |
under Bayesian LASSO shrinkage. Darker red indicates larger loadings in absolute value.

The X symbols denote zero restrictions imposed by the block-lower triangular assumption.

4We verify that the results are preserved when varying the values of the hyperparameters (aλ, bλ).
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2.3 Identification Strategy

2.3.1 Econometric Framework

Identifying five distinct dimensions of monetary policy in high-frequency data poses substan-

tial challenges. Relying only on zero restrictions (Altavilla et al., 2019; Swanson, 2021) would

require ten constraints to achieve point-identification, a demanding requirement. Sign re-

strictions rely on weaker assumptions but are not sufficient to disentangle multiple monetary

policy instruments expected to have qualitatively similar effects on variables. For instance,

theory suggests that contractionary shocks operating through conventional policy, forward

guidance, or asset purchases all raise yields and the exchange rate while depressing stock

valuations and inflation expectations.

We overcome these identification challenges by augmenting sign restrictions with narra-

tive restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018) based on well-documented histor-

ical episodes. We translate historical evidence into inequality constraints on the posterior of

factor loadings by exploiting variations in the relative importance of different shocks across

policy events.

For a narrative event at time τ , let shock j be the most important driver of the high-

frequency movement of asset i:

|Λijϵjτ | > max
k ̸=j

|Λikϵkτ | (4)

We implement such narrative restrictions on loadings Λij using element-by-element Gibbs

sampling (Korobilis, 2022). The unrestricted posterior for Λij conditional on all other pa-

rameters follows from conjugate normal-normal updating:

p(Λij|·) ∝ N (µ̄ij, σ̄
2
ij) (5)

σ̄−2
ij = Ωij +

T∑
t=1

ϵ2jt
σvi,sv(t)

(6)

µ̄ij = σ̄2
ij

[
Ωijµij +

T∑
t=1

ϵjtỹit
σvi,sv(t)

−
∑
k ̸=j

Λik

T∑
t=1

ϵjtϵkt
σvi,sv(t)

]
(7)
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where the notation p(Λij|·) denotes the posterior conditional on all other parameters, µ̄ij

and σ̄2
ij are the posterior mean and variance of Λij, Ωij and µij are the prior precision and

mean, ỹit = yit−
∑M

m=1Bimxmt is the residualized asset price movement, and σvi,sv(t) denotes

the variance of the residual for asset i in regime state sv(t).

Narrative restrictions truncate the posterior for Λij. Let Tj denote the set of narrative

events for shock j. The restricted posterior is given by:

p(Λij|·,Aij) ∝ N (µ̄ij, σ̄
2
ij)×

∏
τ∈Tj

1{Λij ∈ Aij(τ)} (8)

where Aij(τ) is the admissible region defined by the narrative restriction for event τ :

Aij(τ) =

{
Λij : |Λij| > max

k ̸=j

|Λikϵkτ |
|ϵjτ |

}
(9)

In practice, we impose sign and narrative restrictions on the loadings Λij by sampling from

the following truncated normal distribution:

Λij|· ∼ T N (µ̄ij, σ̄
2
ij, aij, bij) (10)


aij = max

{
0, max

τ∈Tj , k ̸=j
|Λikϵkτ |
|ϵjτ |

}
, bij = ∞ if Λij > 0

aij = −∞, bij = min

{
0, − max

τ∈Tj , k ̸=j
|Λikϵkτ |
|ϵjτ |

}
if Λij < 0

(11)

where T N (µ, σ2, a, b) denotes the Normal distribution with mean µ and variance σ2 trun-

cated to the interval [a, b]. The bounds ensure that shock j is the largest contributor to the

movement in asset i for each narrative event τ ∈ Tj while respecting the sign restrictions

imposed on Λij. This element-by-element5 sampling strategy6 automatically satisfies both

sign and narrative restrictions without having to implement computationally demanding

accept/reject algorithms7

5Element-by-element Gibbs sampling introduces serial correlation in the MCMC draws. To mitigate
autocorrelation in posterior samples, we thin the chain by retaining every 5-th draw after the burn-in phase.

6Korobilis (2022) implements a similar algorithm in a Bayesian factor model with sign restrictions only.
7It should be mentioned, however, that this does not imply one can impose any identifying restriction on

the model either. If the restriction is not supported by the data, then the truncated interval [a, b] might be
empty or contain negligible posterior probability mass.
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2.3.2 Identifying Assumptions

We implement a set of sign and narrative restrictions to set-identify conventional monetary

policy (alternatively called target), forward guidance, quantitative easing, asymmetric coun-

try risk premia, and information shocks. The first three are the standard policy instruments

documented in the literature (Altavilla et al., 2019; Swanson, 2021). The fourth is specific to

the euro area currency union and captures diverging sovereign risk premia dynamics between

core and peripheral countries (Motto and Özen, 2022; Ricco et al., 2025). Finally, the fifth

factor controls for the effects of unexpected shifts in the ECB’s assessment of the economic

outlook (Nakamura and Steinsson, 2018; Jarociński and Karadi, 2020).

Sign Restrictions. The sign restrictions impose theory-consistent responses following

contractionary shocks:

1. Conventional monetary policy, forward guidance, and quantitative easing shocks raise

yields and the exchange rate, depress stocks and the ILS.

2. Asymmetric country risk premia shocks raise peripheral yields and lead to declines in

risk-free yields (OIS), stocks, and the exchange rate.

3. The information shock induces a positive comovement between all assets (Jarociński

and Karadi, 2020).

Narrative restriction for conventional policy (May 10, 2001). Amid a deteriorat-

ing economic outlook, the ECB cut interest rates by 25bps to 4.5% for only the second time

since its inception in 1998. In doing so, the ECB reversed prior expectations set in earlier

public statements that emphasized the central bank’s mandate to maintain price stability.

CNN covered the event with an article headlined ”ECB surprises with rate cut” and notes

”Only three economists out of 50 polled by Reuters expected a rate cut.” The article reported

comments by David Brown, then chief economist at Bear Stearns, who stated ”That’s got

to be the biggest monetary shock of the new millennium [...] They’ve completely pulled

the wool over the market’s eyes.” Similarly, Forbes reported ”A very surprising European

Central Bank interest rate cut propelled stock markets in Europe higher [...] The move [...]

came as a surprise to most observers [...]”. This restriction is imposed on the 1-, 3-, and
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6-month OIS yields, the stock price index, the Euro/Dollar exchange rate, and the 1-year

ILS.

Narrative restriction for forward guidance (December 15, 2022). During the

post-pandemic inflation surge, the ECB issued hawkish forward guidance stating that ”based

on the substantial upward revision to the inflation outlook, expects to raise them [interest

rates] further. In particular, the Governing Council judges that interest rates will still have to

rise significantly at a steady pace”. The press release reiterates, in a new passage compared

to the previous press release, that ”The Governing Council decided to raise interest rates

today, and expects to raise them significantly further” and changed ”Inflation [...] will stay

above the target for an extended period” to ”inflation [...] is projected to stay above the

target for too long.” It also adds the following new passage ”underlying price pressures across

the economy have strengthened and will persist for some time”.

The next day, the Financial Times covered the event with the headline ”Lagarde admits

ECB ’in for the long game’ on rate rises”. Similarly, the New York Times reports ”Europe’s

Central Banks Raise Rates, and Prepare for More”. This restriction is imposed on the 1-, 2-,

and 3-year OIS yields, the stock price index, the Euro/Dollar exchange rate, and the 1-year

ILS.

Narrative restriction for quantitative easing (January 22, 2015). Mario Draghi

confirmed circulating rumours of further monetary stimulus beyond an interest rate cut with

the announcement of the asset purchase programme (APP) starting in March 2015 and with

monthly purchases of €60 billion. The decision was partially leaked the previous evening

and therefore anticipated by markets, but the scale of purchases exceeded expectations.

The main headline on the Financial Times Europe edition cover page on January 23, 2015

reads ”Markets rally as ECB bond-buying plan exceeds investor expectations.” Similarly, the

New York Times writes ”Mario Draghi, said [...] would begin buying bonds worth 60 billion

euros, [...] a month. That is more spending than the €50 billion a month that many

analysts had been expecting.” This is one of the largest quantitative easing shocks identified

by Altavilla et al. (2019). This restriction is imposed on the 5-, 7-, and 10-year OIS yields,

the 5- and 10-year Italian sovereign yields, the stock price index, the Euro/Dollar exchange

rate, and the 1-year ILS.
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Narrative restriction for asymmetric country risk (July 26, 2012). This event

corresponds to the ”whatever it takes” speech given by Mario Draghi in London and during

which he pledged an unlimited commitment towards the Euro, stating ”Within our mandate,

the E.C.B. is ready to do whatever it takes to preserve the euro. And believe me, it will be

enough [...] the euro is irreversible.”

The New York Times reported on the speech with an article titled ”Assurances on Euro

by Central Bank Chief Lift Stocks”. Similarly, CNN titles an article ”Draghi to the rescue”.

This restriction is imposed on the 2-, 5-, and 10-year Italian sovereign yields, the stock price

index, the Euro/Dollar exchange rate, and the 1-year ILS.

3 Euro Area Monetary Policy Shocks

In this section, we present the identified high-frequency monetary policy shocks for the euro

area. We tie these to the narrative record and discuss the relevance of information shocks.

We then relate our identified shock series with the literature.

3.1 Identified Shocks

Although the restrictions we impose are set-identifying only, the monetary policy factors

we recover are tightly identified. Figure 2 displays the columns of the loadings matrix Λ

along with 95% highest posterior density (HPD) bands together with the time series for the

identified shocks. Figure 3 presents the same plots for information shocks.

Conventional monetary policy predominantly affects short-term interest rates, with im-

pacts declining smoothly along the yield curve. Forward guidance operates through the

middle and long end of the yield curve while leaving short-term rates largely unchanged,

and generates substantial exchange rate movements. Quantitative easing shocks only affect

yields with maturities exceeding five years. Asymmetric country risk premia shocks trigger

flight-to-safety dynamics: they moderately depress long-dated risk-free yields while sharply

elevating peripheral sovereign yields, and they simultaneously generate strong reactions in

both equity markets and the exchange rate. Finally, the information shock closely resembles

forward guidance in its term structure effects but induces positive comovements between
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yields and stock prices.

The identified shocks align closely with the historical record. The largest expansionary

conventional shock identified captures the coordinated response to the 9/11 attacks, when on

September 17, 2001, the ECB cut rates by 50 basis points along with the Federal Reserve and

other major central banks. The largest contractionary forward guidance shock occurred on

June 5, 2008, when amid rising inflationary pressures the ECB held rates at 4% while Trichet

issued hawkish guidance. The New York Times noted the ECB ”warned unexpectedly that

it might raise interest rates next month,” though markets had expected rates to remain

steady. Lehman Brothers would collapse just two months later.

The largest contractionary quantitative easing shock happened on December 3, 2015,

when the ECB maintained the prevailing monthly rate of asset purchases under the APP,

disappointing market expectations of further expansion. The Financial Times headlined

”Market sell-off as fresh Draghi bid to boost growth disappoints”. Finally, the largest con-

tractionary asymmetric country risk premia shock occurred on March 12, 2020 when ECB

President Christine Lagarde stated the bank was ”not here to close spreads,” triggering a

widening in peripheral sovereign spreads8.

The time series plots also reflect the evolving nature of euro area monetary policy. Prior

to the financial crisis, policy was conducted exclusively through conventional interest rate

adjustments and forward guidance. During the European sovereign debt crisis, asymmetric

country risk premia shocks became the most important drivers of high-frequency movements

in asset prices around policy events. As the ECB reached the zero lower bound, asset

purchases became the primary policy instrument in the mid-2010s. Finally, all policy tools

were simultaneously used during the post-pandemic inflation surge; see Appendix Figure 1.

8In a CNBC interview later that day, she reversed course, stating “I am fully committed to avoid any
fragmentation in a difficult moment for the euro area”
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Figure 2: Identified Monetary Policy Shocks: Impact Matrix Λ and Time Series
Notes: The first and third rows display posterior medians of factor loadings Λ·,j along with 95%
HPD bands for each shock, with the shocks normalized to have unit variance. The second and
fourth rows show the identified shock time series ϵjt over the sample period.
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3.2 The Role of Information Shocks

The time series plots reveal substantial time-varying heteroskedasticity and heavy tails9 in

the monetary policy shocks. The information shock, however, exhibits markedly different

behavior. Unlike the four policy shocks, the information shock series appears extremely

noisy and fails to map onto identifiable historical episodes. The largest contractionary in-

formation shock identified corresponds to a speech on payment systems that did not reveal

any material information about the economic outlook10. Most large information shocks are

identified during intermeeting events, in contrast to the monetary policy shocks for which

large realizations occur predominantly during GC meetings.

Figure 4 reveals substantial tail deviations from normality for all policy shocks, while

information shocks are concentrated around the mean and close to being Normal. Across

posterior draws, the ratio of high-state to low-state variance ranges from 30 to 350 for

monetary policy shocks, but stands at just 2.7 for information shocks.

(a) Information Shock Impact (Λ·,5) (b) Information Shock Time Series

Figure 3: Information Shock: Structural Impact and Time Series

Note: Panel (a) displays posterior medians of factor loadings Λ·,5 along with 95% HPD bands

for the information shock, with the shock normalized to have unit variance. Panel (b) shows the

identified shock time series ϵ5t over the sample period.

Furthermore, Table 1 shows that monetary policy uncertainty (Bauer et al., 2021) and

the composite indicator of systemic risk (CISS) (Hóllo et al., 2012) are significant predictors

9We estimate negligible cross-correlations among squared monetary policy shocks. This finding, together
with the high kurtosis of the identified shocks, provides support for identification strategies that exploit
non-Gaussianity and shock independence (Jarociński, 2024).

10The transcript for the speech can be accessed here.
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Figure 4: Distributions of Identified Structural Shocks

Note: The left panel shows violin plots of the identified structural shocks. The right panel displays

Q-Q plots against the normal distribution, with policy shocks (conventional policy/target, forward

guidance, quantitative easing, and asymmetric country risk premia) pooled together in black

and the information shock shown separately in red. Deviations from the 45-degree line indicate

departures from normality.

of high-frequency movements in several risk-free and sovereign yields at maturities of two

years and greater, segments of the yield curve generally associated with information effects.

This confirms findings by Bauer and Swanson (2023) and Ricco et al. (2025) that high-

frequency surprises are partially predictable. The estimates in Table 1 imply that, when

systemic stress is high, the ECB provides less accommodation than expected by markets,

and vice versa when there is uncertainty regarding the stance of monetary policy.

These observations suggest that the identified information shocks may in fact capture

residual positive comovements across assets—fluctuations that, by construction, cannot be

attributed to the other four shocks given the sign restrictions we impose.

3.3 Comparison with the Literature

We also verify that the shocks we identify correlate with those previously identified in the

literature. In Table 2, we compute the Pearson and rank correlations between our identified

shocks and the ones derived by Altavilla et al. (2019). They consider seven OIS yields in their
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Table 1: Predictability of High-Frequency Movements in Financial Assets

CISS MP STOXX50 Oil Yield DE-IT Core Unemp.
Uncer. Price Slope Spread HICP

OIS 1M 0.01 −0.01 −0.02∗ −0.01 0.00 −0.02 0.00 0.00
OIS 3M −0.02 −0.01 −0.03∗ −0.01 0.01 0.01 0.01 0.01
OIS 6M 0.02 −0.03 −0.01 −0.03 0.03 0.01 0.01 0.01
OIS 1Y 0.04 −0.05∗ 0.01 −0.02 0.02 0.02 0.00 0.00
OIS 2Y 0.11∗∗∗ −0.08∗∗∗ 0.03 −0.04 0.02 0.02 −0.03 0.02
OIS 3Y 0.12∗∗∗ −0.09∗∗∗ −0.01 −0.06 0.03 0.02 −0.03 0.02
OIS 5Y 0.10∗∗ −0.07∗∗ 0.00 −0.08 0.03 0.01 −0.04 0.02
OIS 7Y 0.11∗∗ −0.06∗ −0.01 −0.11 0.02 0.02 −0.05 0.02
OIS 10Y 0.11∗∗ −0.05 −0.02 −0.11 0.02 0.02 −0.05 0.03
IT 2Y 0.07∗∗ −0.06∗∗∗ −0.02 −0.03 0.02 0.01 −0.04 0.01
IT 5Y 0.06∗∗ −0.06∗∗∗ −0.01 −0.00 0.02 0.00 −0.05 0.01
IT 10Y 0.08∗∗ −0.05∗∗ −0.02 −0.01 0.02 −0.01 −0.02 0.02
EUROSTOXX −0.01 0.01 −0.00 −0.04 0.07 0.01 −0.04 −0.05∗

EUR/USD 0.05 −0.03 −0.01 −0.01 0.04 0.01 −0.05 0.01
ILS 1Y −0.00 0.07∗∗ 0.02 −0.01 0.08 −0.02 0.01 0.01

Notes: This table reports coefficient values B associated with the control variables xt.
∗, ∗∗, and ∗∗∗ denote

that zero is not contained in the 90%, 95%, and 99% HPD intervals, respectively.

specification. Our target and forward guidance shocks correlate strongly with theirs, though

they also correlate with the additional near-term forward guidance shocks (Timing) they

identify. On the other hand, their quantitative easing shocks are positively correlated with

our residual information shocks. This may reflect the fact that they do not impose restrictions

inducing negative comovements between yields and stock prices, such that their quantitative

easing shocks may incorrectly capture positive comovements between these assets.

The shocks we identify also align with the narrative restrictions used by Badinger and

Schiman (2023). One of the events they use in their narrative analysis is the GC meeting

on November 6, 2008, when the ECB cut rates by 50 basis points, disappointing markets

after the Bank of England had slashed its policy rate by 150 basis points less than two

hours earlier. We identify this as the largest contractionary target shock. They also use

the October 6, 2011, GC meeting when Trichet held rates constant but emphasized inflation

risks on the upside, while most market participants had either expected rates to remain

unchanged or cut. We identify this episode as the fourth largest contractionary shock in

our sample. This was followed by the surprise 25 basis point rate cut by Mario Draghi on

November 3, 2011. The cut, which occurred during Draghi’s first GC meeting, was perceived

as a shift toward a more dovish policy stance and reversed expectations that Trichet had set
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in motion at his final GC meeting. This is the fifth largest expansionary target shock we

identify.

Table 2: Correlation of Identified Shocks with Altavilla et al. (2019)

ABGMR 2019 Target Forward Quantitative Asymmetric Information
Guidance Easing Country Risk

Target 0.73 −0.15 0.10 0.05 0.09
(0.59) (−0.03) (0.15) (−0.04) (0.17)

Timing 0.52 0.29 0.23 −0.12 −0.07
(0.58) (0.21) (0.26) (−0.13) (−0.06)

Forward Guidance 0.23 0.72 0.15 −0.01 0.22
(0.16) (0.71) (0.02) (−0.10) (0.24)

Quantitative Easing −0.04 0.04 0.48 −0.29 0.63
(−0.08) (0.01) (0.36) (−0.19) (0.69)

Notes: This table reports Pearson correlation coefficients between shocks identified in this paper and those
from Altavilla et al. (2019) over the common sample of ECB GC meetings. Spearman rank correlations are
shown in parentheses.

4 The Macroeconomic Effects of Monetary Policy

In this section, we present the macroeconometric model used to trace out the impact of

monetary policy shocks on economic outcomes. We then present our estimates and discuss

their sensitivity to the identifying assumptions we impose.

4.1 Econometric Methodology

We study the aggregate dynamic causal effects of monetary policy instruments using a

Bayesian VAR-DL with time-varying volatility:

yt =

p∑
l=1

Φlyt−l +

q∑
j=0

Ψjmt−j + vt (12)

vt ∼ N (0,Σt) (13)

Σt = ehtΣ (14)

ht = ρhht−1 + uht , uht ∼ N (0, σ2
h) (15)
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where yt is an n× 1 vector of endogenous variables, Φl are n× n autoregressive coefficient

matrices, p is the number of autoregressive lags, mt denotes the aggregated high-frequency

monetary policy shocks, Ψj are n×1 distributed lag coefficient vectors, and q is the number

of distributed lags for the shock. Following Carriero et al. (2016), we model time-varying

volatility with a single common factor that proportionally scales all covariances. This par-

simonious specification controls for heteroskedasticity, which is particularly important when

including the pandemic era in the sample, see Appendix Figure 2.

The Bayesian VAR-DL framework offers several advantages in our setting. First, as

shown by Baek and Lee (2022), impulse-response coefficients are asymptotically unbiased

up to horizon H ≤ q. In fact, autoregressive distributed lags models are equivalent to local

projections with additional controls for the future realizations of the shocks, thus improving

efficiency (Montiel Olea et al., 2025). Second, the Bayesian implementation allows us to

propagate the uncertainty surrounding the high-frequency estimates of the monetary policy

shocks by directly sampling mt at each MCMC iteration from the posterior draws obtained

from the Bayesian factor model11. As such, Bayesian methods allow us to overcome a major

difficulty when using distributed lag models in frequentist settings where the shock series mt

either needs to be observed or estimates need to be adjusted for generated regressors.

In addition, this framework allows us to impose overidentifying zero, sign, or magni-

tude restrictions on the impulse-responses to sharpen identification12. Moreover, Bayesian

shrinkage can be applied to the autoregressive matrices Φl to facilitate the choice of lags p.

Finally, it is also possible to trade off higher bias for lower variance in the impulse-response

estimates by either (i) penalizing the differences in consecutive impulse-responses coefficients

to impose smoothness or (ii) shrinking impulse-responses toward low-order polynomials. In

our application, we find that the former leads to considerably smoother responses at the

cost of minimal bias. Specifically, for each equation i, let ψi = [ψi,0, ψi,1, . . . , ψi,q]
′ denote

the (q + 1) × 1 vector of distributed lag coefficients on the monetary policy shock, where

ψi,j is the i-th element of Ψj. We impose a Bayesian ridge prior that penalizes d-th order

11In contrast, most studies treat identified high-frequency monetary policy shocks as data. A notable
exception is Jarociński and Karadi (2025) who employ a similar strategy to ours.

12For impact restrictions, one can directly truncate the posterior for ψj . For restrictions at longer horizons,
one can use an accept/reject procedure instead.
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differences:

ψi | · ∼ N
(
0,
(
Iq+1 + λdiP

)−1
)

(16)

where P = D′D is the (q + 1) × (q + 1) penalty matrix, D is the (q + 1 − d) × (q + 1)

d-th order difference operator, and λdi > 0 controls the degree of smoothing for equation i.

For second-order differences (d = 2), the prior penalizes large changes in the slope of the

impulse-response function, and the (q − 1)× (q + 1) difference matrix is given by:

D =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 −2 1

 (17)

The penalty parameter λdi is estimated from the data using a hierarchical prior λdi ∼

Gamma(αλd , βλd), where we set a proper but very diffuse prior αλd = βλd = 0.001. The

conditional posterior for λdi is:

log(p(λdi | ·)) = (αλd−1) log(λdi )−βλdλdi+
1

2
log(det(Iq+1+λ

d
iP))−1

2

(
ψ′
iψi + λdiψ

′
iPψi

)
(18)

which we sample using a random-walk Metropolis-Hastings step on the logarithmic scale to

ensure positivity. We discuss polynomial shrinkage and the other posterior distributions in

Appendix A.2.

4.2 Model Specification

The specification we consider includes six variables at monthly frequency: the main policy

rate, which is either the OIS 3-month yield for target shocks, the OIS 2-year yield for forward

guidance shocks, the 10-year German sovereign yield for quantitative easing shocks, or the 2-

year Italian sovereign yield for asymmetric country risk premia shocks; industrial production,

HICP inflation, real GDP13, the real effective exchange rate based on a trade-weighted basket

of 42 currencies, and M2 money supply. All the time series were downloaded from the ECB

13We linearly interpolate monthly real GDP.
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data portal. All variables enter in logarithms except for the policy rate, which enters in

levels, and HICP inflation, which is computed as the logarithmic difference of the HICP

index.

Given prior evidence that the effects of monetary policy take 12 to 18 months to fully

materialize, we conservatively set q = 24 and consider a similar forecast horizon. We set

p = 3 and impose standard Minnesota priors14 on the matrices Φl. The sample covers

2001M1-2024M2, and for quantitative easing and asymmetric country risk premia shocks we

start the analysis in January 2008 instead.

Identifying the effects of unconventional monetary policy instruments is challenging with-

out additional restrictions given the small sample sizes and the relatively sparse set of large

monetary policy shocks identified (see Figure 2). Therefore, we impose the following overi-

dentifying sign restrictions for two quarters following impact: contractionary monetary policy

must raise the relevant policy rate and the real exchange rate while depressing industrial pro-

duction, GDP, inflation, and money supply. For asymmetric country risk premia shocks, we

do not restrict the response of inflation since it is ex-ante unclear whether prices will fall

due to lower economic activity or rise as a result of declining exchange rates. All of the

sign restrictions imposed are consistent with the impact high-frequency responses shown in

Figure 2 and standard predictions from theoretical models. Finally, we impose second-order

difference shrinkage (d = 2) on the impulse-response coefficients following Equations (16)-

(17). We discuss the implications of the sign restrictions and shrinkage on the estimates

below.

4.3 Results

All the figures we present depict the impulse-responses to a monetary policy shock rescaled

to produce a 25 basis points peak response in the corresponding policy rate. We report the

posterior medians of the impulse-responses along with 16th and 84th percentile HPD bands.

Overall, conventional monetary policy shocks induce the largest responses. The response

in the OIS 3-month yield is very persistent and remains stable for nine months before revert-

14We set the overall tightness parameter to 0.2, the cross-lag shrinkage multiplier to 0.5, and the lag decay
exponent to 1.
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ing to trend, confirming the shocks we identify in the high-frequency sample also capture

movements in interest rates at lower frequencies. A 25 basis-point peak increase in the 3-

month OIS yield leads to a decline in real GDP of up to 0.5% between six to nine months

following the shock. Industrial production reacts more strongly, with a trough exceeding

1.5% after nine months. HICP inflation reacts immediately and its response attains a max-

imum decline of 0.75% after nine months and remains below trend over the entire forecast

horizon.

Responses to forward guidance shocks are generally much more muted and effects take

longer to materialize, despite movements in the OIS 2-year yield being comparable to the

response of the 3-month OIS yield to target shocks. Real GDP falls by only 0.25% in the

first year following the shock, with the response slowly declining to -0.5% after two years,

but uncertainty bands are wide at longer horizons. Industrial production exhibits similar

patterns. HICP inflation falls at most by 0.1% over the forecast horizon, and both money

supply and the real exchange rate react less strongly than for conventional policy shocks.

Quantitative easing shocks induce larger responses than forward guidance shocks. The

responses for inflation, industrial production, and money supply are qualitatively similar to

but slightly smaller than for target shocks. In contrast, the real exchange rate rises very

persistently, jumping by 1% on impact and reaching a peak response above 3% after six

months before slowly reverting to trend.

Finally, asymmetric country risk premia shocks induce a very persistent response in the

sovereign Italian 2-year yield. Nonetheless, the responses of all other economic variables

are generally muted and smaller in magnitude than for the other shocks. GDP and indus-

trial production fall moderately over the forecast horizon, reaching troughs close to 0.5%

after two years. On the other hand, inflation rises moderately by 0.1%, but there is con-

siderable uncertainty surrounding the estimates (recall we do not impose sign restrictions

for this response). Therefore, the inflationary impact of currency depreciation dominates

the disinflationary effects resulting from weakening economic activity, thus giving rise to

stagflationary dynamics.
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Responses to Conventional Monetary Policy Shocks

OIS 3-Month Real GDP Industrial Production

HICP Inflation M2 Money Supply Real Exchange Rate

Responses to Forward Guidance Shocks

OIS 2-Year Real GDP Industrial Production

HICP Inflation M2 Money Supply Real Exchange Rate

Figure 5: Impulse-Responses to Target and Forward Guidance Shocks

Note: Impulse-responses to contractionary monetary policy shocks. Responses to target shocks

rescaled to induce a peak response of 25bps in the OIS 3-month yield. Responses to forward

guidance shocks rescaled to induce a peak response of 25bps in the OIS 2-year yield. The solid

black line shows the posterior median response, while the bands correspond to the 16th and 84th

percentile HPD bands. See text for a description of the model and identifying assumptions.
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Responses to Quantitative Easing Shocks

OIS 10-Year Real GDP Industrial Production

HICP Inflation M2 Money Supply Real Exchange Rate

Responses to Asymmetric Risk Country Premia Shocks

Italy 2-Year Yield Real GDP Industrial Production

HICP Inflation M2 Money Supply Real Exchange Rate

Figure 6: Impulse-Responses to Quantitative Easing and Asym. Risk Country Premia Shocks

Note: Impulse-responses to quantitative easing and asymmetric risk country premia shocks. Re-

sponses to quantitative easing shocks rescaled to induce a peak response of 25bps in the OIS

10-year yield. Responses to asymmetric risk country premia shocks rescaled to induce a peak

response of 25bps in the Italian 2-year government bond yield. The solid black line shows the pos-

terior median response, while the bands correspond to the 16th and 84th percentile HPD bands.

See text for a description of the model and identifying assumptions.

25



4.4 Alternative Specifications

In Figure 7, we assess the sensitivity of the impulse-response estimates to the overidentifying

sign restrictions we impose. We plot responses for the yield associated with each shock,

industrial production, and HICP inflation for sign restrictions either imposed for 2 quarters

(baseline), 1 quarter, or on impact only.

The responses remain broadly similar across specifications with two exceptions. First, the

magnitude of the responses is larger when imposing dynamic sign restrictions. In particular,

dynamic sign restrictions sharpen the identification of the 10-year German sovereign yield

response to quantitative easing shocks, thus pointing to possible weak identification concerns

when relying solely on the high-frequency proxy. Such issues are largely unavoidable given

the limited 16-year sample available for this instrument.

Second, the response for industrial production (and to a lesser extent inflation) to forward

guidance shocks displays puzzling behaviors without dynamic sign restrictions. Other studies

relying on high-frequency instruments have also documented similar puzzles in the responses

to forward guidance shocks, see for instance Miranda-Agrippino and Ricco (2023), Swanson

(2024), and Ricco et al. (2025). Note that such puzzles occur despite the fact that we control

for predictability in the high-frequency asset movements and allow for residual information

shocks.

Overidentifying dynamic sign restrictions are able to rule out these pathological behaviors

and induce responses in industrial production and HICP inflation that remain negative over

the entire forecast horizon. Again, it is important to underline that were the sign restrictions

rejected by the data, then one would be unable to sample from the truncated posterior for the

distributed lag coefficients Ψj. Nevertheless, these findings suggest that additional research

is needed to understand the extent to which high-frequency asset movements around policy

events capture endogenous responses by central banks to past macroeconomic shocks, and

how to effectively control for these confounding factors.

In Figure 8, we assess the sensitivity of our estimates to the shrinkage priors we impose on

the impulse-response coefficients. The difference shrinkage prior is very effective at smoothing

the impulse-responses, which otherwise exhibit the jaggedness characteristic of distributed
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lag and local projection estimators. At the same time, posterior medians remain broadly

unchanged across both specifications, and none of the substantive conclusions we reach are

materially affected by shrinking the impulse-response coefficients15.

5 Conclusion

In this paper, we develop a novel identification strategy that combines narrative restrictions

with high-frequency data to separately identify multiple dimensions of euro area monetary

policy. Drawing on pivotal ECB policy episodes, we impose a single narrative restriction

per shock and are able to disentangle conventional policy, forward guidance, quantitative

easing, and asymmetric country risk premia shocks. This approach avoids the challenging

requirement that, ex-ante, many assets do not respond to some policy shocks.

Our high-frequency Bayesian factor model, which accounts for both predictability in

asset price movements and time-varying volatility, reveals that information shocks exhibit

markedly different behavior from policy shocks: they are noisy, fail to align with identifiable

historical episodes, and display negligible time-varying heteroskedasticity. These findings

suggest that the positive comovements typically attributed to information effects may instead

reflect residual variation in asset prices unaccounted for by other shocks.

The macroeconomic analysis reveals substantial heterogeneity in the transmission of mon-

etary policy across instruments. Conventional policy shocks generate the largest responses,

whereas forward guidance transmits with longer lags and produces considerably weaker ef-

fects. The magnitude of quantitative easing effects lies between those of forward guidance

and conventional policy.

These findings carry important implications for monetary policy design in the euro area.

The limited effectiveness of forward guidance suggests that managing expectations about the

future path of short-term rates provides only modest stimulus compared to actual changes

in current rates or asset purchases. Asymmetric country risk premia shocks present a dis-

tinct challenge for euro area policymakers as they produce stagflationary dynamics wherein

15However, it remains important to compare a specification that sacrifices some bias for variance reduction
with one that only prioritizes low bias, as we do here following the recommendations of Montiel Olea et al.
(2025).
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Responses to Conventional Monetary Policy Shocks

OIS 3-Month Industrial Production HICP Inflation

Responses to Forward Guidance Shocks

OIS 2-Year Industrial Production HICP Inflation

Responses to Quantitative Easing Shocks

OIS 10-Year Industrial Production HICP Inflation

Responses to Sovereign Risk Shocks

Italy 2-Year Yield Industrial Production HICP Inflation

6 Months (with bands) 3 Months Impact Only

Figure 7: Sensitivity to Sign Restriction Duration

Note: Impulse-responses to all monetary policy shocks under different sign restriction durations.

All shocks induce a peak response of 25bps in their respective yields. The solid black line shows

the posterior median response with shaded 68% HPD bands for the baseline 2-quarter restriction

specification. Dashed red and dotted blue lines show median responses for 1-quarter and impact-

only restrictions, respectively. See text for a description of the model and identifying assumptions.
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Responses to Conventional Monetary Policy Shocks

OIS 3-Month Industrial Production HICP Inflation

Responses to Forward Guidance Shocks

OIS 2-Year Industrial Production HICP Inflation

Responses to Quantitative Easing Shocks

OIS 10-Year Industrial Production HICP Inflation

Responses to Sovereign Risk Shocks

Italy 2-Year Yield Industrial Production HICP Inflation

Difference Shrinkage (with bands) No Shrinkage (with bands)

Figure 8: Sensitivity to Smoothing Prior Specification

Note: Impulse-responses to all monetary policy shocks with and without difference shrinkage

priors on the distributed lag coefficients. All shocks induce a peak response of 25bps in their

respective yields. Solid black lines with shaded bands and dashed red lines with dashed bands show

posterior median responses and 68% HPD bands for specifications with and without shrinkage,

respectively. See text for a description of the model and identifying assumptions.

29



peripheral yields remain elevated, economic activity falls, and prices rise. The ECB’s Trans-

mission Protection Instrument launched in 2022 represents a step toward addressing such

fragmentation risks. Nonetheless, the cross-border spillovers from sovereign stress underscore

the critical importance of sound fiscal policies by national governments to maintain financial

stability across the currency union.

Several promising avenues for future research emerge from our analysis. For instance, the

identified shocks could be used together with structural models to conduct counterfactual

policy analysis under weaker assumptions than pure model-based approaches (McKay and

Wolf, 2023). Additionally, the identified shocks could help to recover the parameters of

Taylor rules augmented with unconventional instruments following the approach proposed

by Barnichon and Mesters (2020). We explore some of these extensions in ongoing work.

30



References

Altavilla, Carlo, Luca Brugnolini, Refet S. Gürkaynak, Roberto Motto, and Giuseppe Ra-

gusa. 2019. ”Measuring Euro Area Monetary Policy.” Journal of Monetary Economics

108: 162-179.

Andrade, Philippe and Filippo Ferroni. 2021. ”Delphic and Odyssean Monetary Policy

Shocks: Evidence from the Euro Area.” Journal of Monetary Economics 117: 816-832.
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Hóllo, Dániel, Manfred Kremer, and Marco Lo Duca. 2012. ”CISS—A Composite Indicator

of Systemic Stress in the Financial System.” ECB Working Paper 1426.

Istrefi, Klodiana, Florens Odendahl, and Giulia Sestieri. 2024. ”High-Frequency Monetary

Policy Shocks: Measurement and Narrative Identification.” Journal of Monetary Eco-

nomics 141: 103514.
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Jarociński, Marek and Peter Karadi. 2020. ”Deconstructing Monetary Policy Surprises—The

Role of Information Shocks.” American Economic Journal: Macroeconomics 12(2): 1-43.
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A Posterior Distributions

A.1 High-Frequency Model Posteriors

We employ a Gibbs sampling procedure to generate draws from the posterior distributions.

The high-frequency model is:

yt = Λϵt +Bxt + vt (A.1)

ϵt ∼ N (0,Σϵ
sϵ), vt ∼ N (0,Σv

sv), sϵ, sv ∈ {low, high} (A.2)

where the notation follows that presented in the main text.

Each element Λij of the loadings matrix is sampled following Equation (8). The posterior

for the structural shocks is given by:

ϵt|· ∼ N (µ̄t, Σ̄t) (A.3)

Σ̄t =
(
Σ−1
ϵ,sϵ(t)

+Λ′R−1
t Λ

)−1

(A.4)

µ̄t = Σ̄tΛ
′R−1

t ỹt (A.5)

where Σϵ,sϵ(t) denotes the regime-specific factor covariance matrix with diagonal elements

σ2
k,sϵ,k(t)

for k = 1, . . . , K, Rt is the diagonal matrix of idiosyncratic variances at time t, and

ỹt = yt −Bxt.

For each factor k, the variance regime indicator Stk ∈ {1(low), 2(high)} at time t is

sampled from its posterior. Specifically, let σ2
k,1 and σ2

k,2 denote the low and high variances,

then the posterior probability that Stk = 1 is:

Pr(Stk = 1|·) =
π1k × ϕ(ϵtk; 0, σ

2
k,1)

π1k × ϕ(ϵtk; 0, σ2
k,1) + (1− π1k)× ϕ(ϵtk; 0, σ2

k,2)
(A.6)

where ϕ(·;µ, σ2) denotes the normal density with mean µ and variance σ2, and π1k is the

probability factor k is in the low variance state. The latter is given by:

π1k|· ∼ Beta(aπ +N1k, bπ +N2k) (A.7)
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where N1k =
∑T

t=1 1{Stk = 1} and N2k =
∑T

t=1 1{Stk = 2} count observations in each state.

We set aπ = 4.0 and bπ = 1.0.

For each factor k and variance state s ∈ {1, 2}, the variance parameters follow inverse

gamma posteriors:

σ2
k,s|· ∼ InverseGamma(ᾱs, β̄s) (A.8)

ᾱs =
αs +Nsk

2
(A.9)

β̄s =
β
s
+
∑

t:Stk=s
ϵ2kt

2
(A.10)

where Nsk counts observations of factor k in state s. We set (α1, β1
) = (0.5, 0.5) for the

low variance state and (α2, β2
) = (0.5, 5.0) for the high variance state. After sampling, the

states are reordered to ensure σ2
k,1 < σ2

k,2 by swapping variances and flipping state indicators

if necessary.

During the factor selection phase described in Section 2.2, we use Bayesian LASSO shrink-

age with factor-specific hierarchical priors on the loadings to determine the dimension K of

ϵt. Under this prior, each loading Λij has a conditional Laplace prior with precision parame-

ter ψij that depends on a factor-specific rate parameter δj. The precision parameter follows

a gamma posterior:

ψij|· ∼ Gamma(ᾱψ, β̄ψ) (A.11)

ᾱψ = αψ +
1

2
(A.12)

β̄ψ =

(
δj +

Λ2
ij

2

)−1

(A.13)

where we set αψ = 1.0. The factor-specific rate parameter δj has posterior:

δj|· ∼ Gamma(ᾱδ, β̄δ) (A.14)

ᾱδ = aλ +N (A.15)

β̄δ =

(
b−1
λ +

N∑
i=1

ψij

)−1

(A.16)
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where we set aλ = 0.25 and bλ = 0.25 for moderate shrinkage. Once K is determined, we

switch to Normal priors without shrinkage for the main estimation.

For each row i of the coefficient matrix B corresponding to control variables, let ŷit =

yit−
∑

kΛikϵkt denote the residual after removing the contribution of structural shocks. The

posterior for Bi,· is given by:

Bi,·|· ∼ N (µ̄Bi,· , Σ̄Bi,·) (A.17)

Σ̄Bi,· =

(
ΩB +

T∑
t=1

xtx
′
t

σvi,sv(t)

)−1

(A.18)

µ̄Bi,· = Σ̄Bi,·

(
ΩBµB

+
T∑
t=1

xtŷit
σvi,sv(t)

)
(A.19)

where we set ΩB = 10× IM and µ
B=0

.

Under the mixture specification for idiosyncratic variances, for each asset i and time t, the

variance regime indicator Sr,it ∈ {1(low), 2(high)} is sampled from its posterior analogously

to the factor regime indicators. Let ri,1 and ri,2 denote the low and high variances for asset

i, then the posterior probability that Sr,it = 1 is given by:

Pr(Sr,it = 1|·) = πr,i × ϕ(vit; 0, ri,1)

πr,i × ϕ(vit; 0, ri,1) + (1− πr,i)× ϕ(vit; 0, ri,2)
(A.20)

where vit = yit−
∑

k Λikϵkt−
∑

mBimxmt is the idiosyncratic error and πr,i is the probability

of being in the low variance state. The state probability πr,i and variance parameters ri,1 and

ri,2 are sampled from beta and inverse gamma posteriors analogously to the factor variances,

with states reordered after sampling to ensure ri,1 < ri,2.

A.2 Bayesian VAR-DL Posteriors

We employ a Gibbs sampling procedure to generate draws from the posterior distributions.

The VAR-DL model is:

yt =

p∑
l=1

Φlyt−l +

q∑
j=0

Ψjmt−j + vt (A.21)

vt ∼ N (0,Σt), Σt = ehtΣ, ht = ρhht−1 + uht , uht ∼ N (0, σ2
h) (A.22)
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where the notation follows that presented in the main text.

We volatility-weight the data for sampling. Let
√
wt = exp(ht/2) denote the volatility

scaling factor. The weighted variables are yt,w = yt/
√
wt, and similarly for the lagged

endogenous variables and distributed lag regressors.

For each equation i, let ϕi denote the stacked vector of autoregressive coefficients and

ψi = [ψi,0, ψi,1, . . . , ψi,q]
′ denote the (q + 1) × 1 vector of distributed lag coefficients on the

monetary policy shock. The posterior for ϕi follows from conjugate normal-normal updating

under Minnesota priors:

ϕi|· ∼ N (µ̄ϕi , Σ̄ϕi) (A.23)

Σ̄ϕi =

(
Ωϕi

+ σ−1
ii

T∑
t=1

Yt,wY
′
t,w

)−1

(A.24)

µ̄ϕi = Σ̄ϕi

(
Ωϕi

µ
ϕi
+ σ−1

ii

T∑
t=1

Yt,wy
∗
i,t,w

)
(A.25)

where Yt,w = [y′
t−1,w,y

′
t−2,w, . . . ,y

′
t−p,w]

′ is the stacked vector of lagged endogenous variables,

y∗i,t,w = yi,t,w−
∑q

j=0 ψi,jmt−j,w is the residualized dependent variable, σii is the i-th diagonal

element of Σ, and Ωϕi
is the Minnesota prior precision matrix. The Minnesota prior mean

µ
ϕi

for asset i is a vector of zeros with a single entry equal to 1 for the first own lag

of variable i. The Minnesota prior variances are Var(ϕ
(l)
i,i ) = (λ1/l

λ3)2 for own lags and

Var(ϕ
(l)
i,j) = (σi/σj) ·(λ1λ2/lλ3)2 for cross-lags, where λ1 controls overall tightness, λ2 controls

cross-lag shrinkage, and λ3 controls lag decay. We set λ1 = 0.2, λ2 = 0.5, and λ3 = 1.0.

The posterior for ψi depends on the shrinkage specification. Under both specifications,

the posterior takes the form:

ψi|· ∼ N (µ̄ψi
, Σ̄ψi

) (A.26)

Σ̄ψi
=

(
Ωψi

+ σ−1
ii

T∑
t=1

Mt,wM
′
t,w

)−1

(A.27)

µ̄ψi
= Σ̄ψi

(
Ωψi

µ
ψi
+ σ−1

ii

T∑
t=1

Mt,wỹi,t,w

)
(A.28)
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where Mt,w = [mt,w,mt−1,w, . . . ,mt−q,w]
′ is the stacked vector of current and lagged shocks,

and ỹi,t,w = yi,t,w −
∑p

l=1 ϕ
′
i,lyt−l,w is the residualized dependent variable after removing the

contribution of autoregressive lags. When sign restrictions are imposed, we sample from

the corresponding truncated normal distribution. If dynamic sign restrictions are used, we

use an accept/reject algorithm to sample from the posterior conditional on such restrictions.

The prior specification (Ωψi
,µ

ψi
) differs between the two shrinkage approaches.

Under the difference penalty specification, we impose the Bayesian ridge prior described

in Equation (16) of the main text, which penalizes d-th order differences in the impulse-

response coefficients. This specification sets Ωψi
= Iq+1 + λdiP and µ

ψi
= 0, where P is the

penalty matrix defined in Equation (17).

The smoothing parameter λdi is estimated from the data using a hierarchical prior λdi ∼

Gamma(αλd , βλd), where we set αλd = 1.0 and β
λd

= 0.1. The conditional posterior for λdi is

given by Equation (18).

Under the polynomial shrinkage specification, we express the distributed lag coefficients

as ψi = Zγi, where Z is the (q + 1) × (Kγ + 1) polynomial basis matrix with elements

Zj,k = jk for lag j and polynomial order k ∈ {0, 1, . . . , Kγ}, and γi are the polynomial

coefficients. The posterior for γi is:

γi|· ∼ N (µ̄γi , Σ̄γi) (A.29)

Σ̄γi =

(
Ωγi

+
λpi
σii

Z′Z

)−1

(A.30)

µ̄γi = Σ̄γi

(
Ωγi
µ
γi
+
λpi
σii

Z′ψi

)
(A.31)

where µ
γi
= 0 and Ωγi

= 0.01×IKγ+1. Under this specification, the priors for the distributed

lag coefficients are given by µ
ψi

= Zγi and Ωψi
= (λpi /σii)Iq+1. The shrinkage intensity
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parameter λpi has a posterior defined by:

λpi |· ∼ Gamma(ᾱp, β̄p) (A.32)

ᾱp = αp +
q + 1

2
(A.33)

β̄p = β
p
+

1

2σii

q∑
j=0

(ψi,j − [Zγi]j)
2 (A.34)

where we set αp = 0.1 and β
p
= 0.1.

The residual covariance matrix Σ follows an inverse Wishart posterior. Let ut,w = yt,w−∑p
l=1 Φlyt−l,w −

∑q
j=0Ψjmt−j,w denote the volatility-weighted residuals. The posterior is:

Σ|· ∼ InverseWishart(ν̄, S̄) (A.35)

ν̄ = ν + T (A.36)

S̄ = S+
T∑
t=1

ut,wu
′
t,w (A.37)

where ν = N + 2 and S = diag(σ̂2
1, . . . , σ̂

2
N) with σ̂2

i estimated from univariate AR(p)

regressions.

The common stochastic volatility states h = (h1, . . . , hT )
′ are sampled using a precision-

based algorithm following Carriero et al. (2016). Let s2 = (s21, . . . , s
2
T )

′ denote the vector of

squared standardized residuals, where s2t = u′
tΣ

−1ut.

We begin by constructing the precision matrix for the AR(1) prior. Let Hρ denote the

T ×T whitening transformation matrix with ones on the main diagonal and −ρh on the first

subdiagonal, and let Ωh be the diagonal precision matrix for the innovations with elements

ω11 = (1− ρ2h)/σ
2
h and ωtt = 1/σ2

h for t > 1. The prior precision is given by H′
ρΩhHρ.

Since the conditional posterior p(h|·) is non-Gaussian due to the exponential form of the

likelihood, we locate its mode h∗ using Newton-Raphson iterations. At each iteration, we

solve:

Khh
new = fh +Ghh

t (A.38)

where fh is the gradient of the log-likelihood with elements fht = −N/2 + s2t e
−ht/2, Gh =
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diag(s21e
−h1/2, . . . , s2T e

−hT /2) is the diagonal negative Hessian, and Kh = H′
ρΩhHρ + Gh

combines the prior precision with the likelihood curvature. Convergence yields the posterior

mode h∗ and the matrix Kh.

To sample from the exact posterior, we employ a hybrid accept-reject Metropolis-Hastings

algorithm. We first generate a high-quality proposal hc via accept-reject sampling from the

Gaussian approximation N (h∗,K−1
h ). We repeatedly draw candidates until one satisfies:

αAR(hc) = −1

2
hc

′
H′
ρΩhHρh

c−N
2

T∑
t=1

hct−
1

2

T∑
t=1

s2t e
−hct+

1

2
(hc−h∗)′Kh(h

c−h∗)−log c > logU

(A.39)

where c is a control constant and U ∼ Uniform(0, 1). We then treat hc as a proposal in a

Metropolis-Hastings step, accepting the move from the current state h to hc with probability

min{1, exp(αMH)}, where αMH = αAR(hc) − αAR(h). This two-stage procedure ensures we

sample from the exact posterior while maintaining computational efficiency. For numerical

stability, we exploit the tridiagonal structure of Kh using banded Cholesky decompositions.

The persistence parameter ρh is sampled via Metropolis-Hastings with a Gaussian pro-

posal centered at the posterior mode from a simplified regression of ht on ht−1. The proposal

has precision Kρ = σ−2
ρ +

∑T
t=2 h

2
t−1/σ

2
h and mean ρ̂h = K−1

ρ (σ−2
ρ ρ

h
+
∑T

t=2 ht−1ht/σ
2
h), where

ρ
h
and σ2

ρ are prior hyperparameters. We set ρ
h
= 0.9 and σ2

ρ = 0.1. The acceptance ratio

includes correction terms for the stationarity constraint and the first observation:

logα(ρcand, ρh) =
1

2
log

1− ρ2cand
1− ρ2h

− 1

2σ2
h

[
(1− ρ2cand)h

2
1 − (1− ρ2h)h

2
1

]
(A.40)

The innovation variance σ2
h follows an inverse gamma posterior:

σ2
h|· ∼ InverseGamma(ᾱh, β̄h) (A.41)

ᾱh = αh +
T

2
(A.42)

β̄h = β
h
+

1

2

[
T∑
t=2

(ht − ρhht−1)
2 + (1− ρ2h)h

2
1

]
(A.43)

where we set αh = 5.0 and β
h
= 0.04.
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Finally, we sample the latent monetary policy shocks mt at each MCMC iteration from

the posterior draws obtained from the high-frequency Bayesian factor model, thereby prop-

agating estimation uncertainty from the high-frequency identification stage to the macroe-

conomic analysis.
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B Additional Figures

Figure 1: Identified Structural Shocks Aggregated at Monthly Frequency
Notes: Figure plots the identified high-frequency monetary policy shocks aggregated at monthly
frequency. The shocks are obtained from the high-frequency Bayesian factor model described in
Section 2.1. Each bar represents the sum of shocks within a given month across all policy events.
Sample covers the period 2001M1-2024M2.

Figure 2: Common Stochastic Volatility Factor
Notes: Figure plots the estimated common stochastic volatility factor ht from the Bayesian
VAR-DL model described in Section 4.1. The solid black line shows the posterior median of
the logarithmic variance scaling factor with shaded 68% HPD bands. Sample covers the period
2001M1-2024M2.
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